
STORM: Lightning-Fast Resource
Management

Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, Scott Pakin, and Salvador Coll
fabrizio@lanl.gov

http://www.c3.lanl.gov/˜fabrizio

Performance and Architecture Laboratory

CCS-3 Modeling, Algorithms, and Informatics Group

Los Alamos National Laboratory

STORM – p.1

http://www.c3.lanl.gov/~fabrizio

Grand Vision

More effective use of cluster resources
Lower response time
Higher throughput

Transparent fault tolerance
No application modifications

STORM – p.2

Buffered Coscheduling

Buffered Coscheduling (BCS) is a new methodology to:

improve system responsiveness

increase resource utilization,

tolerate inefficient programs (with communication and
load imbalance),

implement fault-tolerance,

in a large-scale parallel computer or a cluster of
workstations

STORM – p.3

Buffered Coscheduling: Vision

COMMUNICATION
LIBRARIES

FAULT
TOLERANCE

RESOURCE
MANAGEMENT

Buffered Coscheduling tries to achieve these goals by
greatly simplyfing the system software (resource
management, communication libraries and fault-tolerance)

STORM – p.4

Buffered Coscheduling: Implementation

µ KERNEL

COMMUNICATION
LIBRARIES

FAULT
TOLERANCE

RESOURCE
MANAGEMENT

Buffered Coscheduling implements resource management,
communication libraries and fault-tolerance on top of a
common �kernel

STORM – p.5

STORM

COMMUNICATION
LIBRARIES

FAULT
TOLERANCE

µ KERNEL

STORM

In this talk we will focus on STORM, a resource manager
implemented on the Buffered Coscheduling �kernel

STORM – p.6

Resource Management

Resource allocation for parallel jobs

Job launch and termination

Cluster management

Monitoring and Debugging

STORM – p.7

STORM

STORM (Scalable TOol for Resource Management)
uses the Buffered Coscheduling �kernel

Easy to port

The key innovation behind STORM is a software
architecture that enables resource management to
exploit low-level network features

As a result of this HPC-application-like design, STORM
is orders of magnitude faster than the best reported
results in the literature

STORM – p.8

Outline

Overview of resource management

STORM architecture

Implementation

Performance evalution

Scalability analysis

STORM – p.9

Characteristics of Desktop versus Cluster

Characteristic Desktop Cluster

Mean time between

user-visible failures

Years Days down to hours

Scheduling Timeshared Batch queued or gang

scheduled with large

quanta

Job-launching speed � �
second Arbitrarily long (batch)

or many seconds

(gang scheduled)

STORM – p.10

State of the art in Resource Management

Resource Managers (e.g., PBS, LSF, RMS, LoadLeveler,
Maui) are typically implemented using

TCP/IP – favors portability over performance

Non scalable algorithms for the distribution/collection of
data and control messages – favors development time
over performance

Performance non important for small clusters, but
crucial for large clusters � need fast and scalable
resource management

If the cluster has a powerful, scalable network, why aren’t we using
it?

STORM – p.11

State of the art in Resource Management

Resource Managers (e.g., PBS, LSF, RMS, LoadLeveler,
Maui) are typically implemented using

TCP/IP – favors portability over performance

Non scalable algorithms for the distribution/collection of
data and control messages – favors development time
over performance

Performance non important for small clusters, but
crucial for large clusters � need fast and scalable
resource management

If the cluster has a powerful, scalable network, why aren’t we using
it?

STORM – p.11

STORM mechanisms

STORM is based on only three mechanisms

XFER-AND-SIGNAL Transfer (PUT) a block of data from local
memory to the global memory of a set of nodes
(possibly a single node).

TEST-EVENT Local synchronization

COMPARE-AND-WRITE Global query with reduction variable.

Efficient and scalable implementation of these mechanisms

� STORM scalable

STORM – p.12

STORM implementation structure

STORM functions
heartbeat, file trans-
fer, termination de-
tection

(STORM helper functions) flow control, queue
management

STORM mechanisms

XFER-AND-SIGNAL,
TEST-EVENT,
COMPARE-AND-
WRITE

Network primitives
remote DMA, net-
work conditionals,
event signaling, . . .

STORM – p.13

Portability of the STORM mechanisms

Network COMPARE-AND-WRITE (�s) XFER-AND-SIGNAL (MB/s)

Gigabit Ethernet

�� �	�
� Unknown

Myrinet

� �	�
� � �� �

Infiniband

� �	�
 � Unknown

QsNET

� �� � �� ���

BlueGene/L � � � �

STORM – p.14

Hardware support for XFER-AND-SIGNAL

STORM – p.15

Hardware support for XFER-AND-SIGNAL

STORM – p.16

Hardware support for XFER-AND-SIGNAL

STORM – p.17

Hardware support for XFER-AND-SIGNAL

STORM – p.18

Hardware support for XFER-AND-SIGNAL

STORM – p.19

Hardware support for COMPARE-AND-WRITE

STORM – p.20

Hardware support for COMPARE-AND-WRITE

STORM – p.21

Hardware support for COMPARE-AND-WRITE

STORM – p.22

Hardware support for COMPARE-AND-WRITE

The STORM mechanisms XFER-AND-SIGNAL and
COMPARE-AND-WRITE can be easily and efficiently
implemented on top of the hardware broadcast.

STORM – p.23

Hardware support for COMPARE-AND-WRITE

The STORM mechanisms XFER-AND-SIGNAL and
COMPARE-AND-WRITE can be easily and efficiently
implemented on top of the hardware broadcast.

STORM – p.23

Scalability of the STORM Mechanisms

1 2 4 8 16 32 64 128 256 512 1024

Nodes

0

1

2

3

4

5

6

7

L
at

en
cy

 (
µs

)

XFER-AND-SIGNAL and COMPARE-AND-WRITE scale
efficiently on Lemieux, Pittsburgh Supercomputing Center.
Less than 10 �s on 768 nodes/3072 processors

STORM – p.24

Experimental Results

64 nodes/256 processors ES40 Alphaserver cluster

2 independent rails of Quadrics

Linux 2.4.3

Files are placed in ramdisk, in order to avoid I/O
bottlenecks and expose the performance of the
resource management algorithms.

STORM – p.25

Launch times (unloaded system)

1 2 4 8 16 32 64 128 256

Processors

0

25

50

75

100

125

150

T
im

e
(m

s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

The launch time is constant when we increase the number
of processors. STORM is highly scalable

STORM – p.26

Launch times (loaded system 12MB)

1 2 4 8 16 32 64 128 256

Processors

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
(m

s)

U U U U U U U U U

Execute (unloaded)
Send (unloaded)

C C C C C C C C C

Execute (CPU loaded)
Send (CPU loaded)

N N N N N N N N N

Execute (network loaded)
Send (network loaded)

Launch time is more sensitive to network load rather
than CPU load

In the worst-case scenario it still takes only 1.5 seconds
to launch a 12 MB file on 256 processors

STORM – p.27

Measured and estimated launch times

1
2

4
8

16
32

64
128

256
512

1024
2048

4096
8192

16384

Nodes

0

50

100

150
L

au
nc

h
ti

m
e

(m
s)

Measured
Modeled, ES40
Modeled, ideal I/O bus

The model shows that in an ES40-based Alphaserver a
12 MB binary can be launched in 135 ms on 16,384 nodes

STORM – p.28

Measured and predicted performance of existing job launchers

We compare the job launching performance of STORM with

rsh (remote shell)

RMS (Resource Management System), production
resource manager of the Quadrics network

Sandia’s Cplant

Bproc

STORM – p.29

Measured and predicted performance of existing job launchers

1
2

4
8

16
32

64
128

256
512

1K
2K

4K
8K

16K

Nodes

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
(s

)
rsh (measured)r
rsh (t = 0.934n + 1.266)
RMS (measured)R
RMS (t = 0.077n + 1.092)
GLUnix (measured)G
GLUnix (t = 0.012n + 0.228)
Cplant (measured)C
Cplant (t = 1.379 lg n + 6.177)
BProc, measuredB
BProc, (t = 0.413 lg n - 0.084)
STORM (measured)S
STORM (modeled; see text)

r

r

R R
R R R

R R

G

G

C C C C C C C C C C C

B B
B

BB B B BBBBBBB

S S S S S S S

STORM – p.30

Relative performance of Cplant, BProc, and STORM

C
C

C
C

C
C

C
C

C
C

C
C

C

B B B B B B B B B B B B

S S S S S S S S S S S S S
1

2
4

8
16

32
64

128
256

512
1K

2K
4K

Nodes

0

50

100

150

200

250

F
ac

to
r

of
 S

T
O

R
M

 t
im

e

Cplant (t = 1.379 lg n + 6.177)C C
BProc, (t = 0.413 lg n - 0.084)B B
STORM (modeled; see text)S S

STORM – p.31

Effect of time quantum with an MPL of 2

0.1 1 10 100 1000 10000

Time quantum (ms)

0

10

20

30

40

50

60

70

T
ot

al
 r

un
 t

im
e

÷
M

P
L

 (
s)

(2ms, 49s)

Sweep3D (MPL=1)
Sweep3D (MPL=2)
Synthetic computation (MPL=2)

Cluster-wide jobs can be scheduled as fast a local process
on a desktop OS.

STORM – p.32

Effect of node scalability

1 2 4 8 16 32 64

Nodes

1

10

100

1000
T

ot
al

 r
un

 t
im

e
÷

M
P

L
 (

s)

SWEEP3D, MPL=1
SWEEP3D, MPL=2
Synthetic computation, MPL=1
Synthetic computation, MPL=2

The scheduling quantum is insensitive to the number of
nodes

STORM – p.33

A selection of scheduling quanta found in the literature

Resource Manager Minimal feasible scheduling quantum

RMS

���� � � �

milliseconds on 15 nodes (1.8% slowdown)

SCore-D

� � �

milliseconds on 64 nodes (2% slowdown)

STORM

�

milliseconds on 64 nodes (no observable slowdown)

STORM – p.34

Conclusions

STORM uses an innovative design based on a small set
of data-transfer and synchronization mechanisms:

XFER-AND-SIGNAL

TEST-EVENT

COMPARE-AND-WRITE

STORM is orders of magnitude faster than the best
reported results in the literature for both job launching
and process scheduling.

STORM – p.35

Conclusions (continued)

STORM isolates network specifics

provides portability

fast implementation � all STORM is fast

can take advantage of network features (HW multicast,
programmable NICs, etc.)

STORM – p.36

Resources

More information can be found at the following URLs:

Resource management
http://www.c3.lanl.gov/par arch
http://www.c3.lanl.gov/˜fabrizio/publications.html

Quadrics network
http://www.quadrics.com and
http://www.c3.lanl.gov/˜fabrizio/quadrics.html

STORM – p.37

Quadrics Network: Elan

SDRAM
I/F Processor

 codeµ

DMA
Buffers

Inputter

FIFO
0

FIFO
1

Link
Mux

MMU &
TLB

Table
Walk

Engine

Clock &
Statistics
Registers

4 Way
Set Associative Cache

PCI Interface

Thread
Processor

100 MHz

Data Bus

66MHz

64

64

72

64

28

10 10200MHz

32

Thread Processor
Runs Communication Protocols

32−bit SPARC−based

STORM – p.38

Quadrics Network: Elan

SDRAM
I/F Processor

 codeµ

DMA
Buffers

Inputter

FIFO
0

FIFO
1

Link
Mux

MMU &
TLB

Table
Walk

Engine

Clock &
Statistics
Registers

4 Way
Set Associative Cache

PCI Interface

Thread
Processor

100 MHz

Data Bus

66MHz

64

64

72

64

28

10 10200MHz

32

with Host
TLB Synchronized

STORM – p.39

	Grand Vision
	Buffered Coscheduling
	Buffered Coscheduling: Vision
	Buffered Coscheduling: Implementation
	STORM
	Resource Management
	STORM
	Outline
	Characteristics of Desktop versus Cluster
	State of the art in Resource Management
	STORM mechanisms
	STORM implementation structure
	Portability of the STORM mechanisms
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Scalability of the STORM Mechanisms
	Experimental Results
	Launch times (unloaded system)
	Launch times (loaded system 12MB)
	Measured and estimated launch times
	small Measured and predicted performance of existing job launchers
	small Measured and predicted performance of existing job launchers
	small Relative performance of Cplant, BProc, and STORM
	Effect of time quantum with an MPL of~2
	Effect of node scalability
	
ormalsize A selection of scheduling quanta found in the literature
	Conclusions
	Conclusions (continued)
	Resources
	Quadrics Network: Elan
	Quadrics Network: Elan

